
 © 2006 Gregor Hohpe. All rights reserved

Programming Without a Call Stack –
 Event-driven Architectures

Gregor Hohpe
www.eaipatterns.com

Most computer systems are built on a command-and-control scheme: one method calls

another method and instructs it to perform some action or to retrieve some required

information. But often the real world works differently. A company receives a new order;

a web server receives a request for a Web page, the right front wheel of my car locks up.

In neither case did the system (order processing, web server, anti-lock brake control)

schedule or request the action. Instead the event occurred based on external action or

activity, caused either by the physical world or another, connected computer system.

Could we change the architecture of our system to relinquish control and instead respond

to events as they arrive? What would such a system look like?

Events Everywhere
The real world is full of events. The alarm goes off; the phone rings; the “gas low”

warning light in the car comes on. Many computer systems, especially embedded systems,

are designed to respond to events. The engine control computer in your car receives an

event every time the crankshaft is at the zero position and starts the timer for another

round of ignitions. As of now, many of the systems that function based on external events

live in a rather small universe, most of

them even invisible to the user. However,

as computer systems become more and

more interconnected they start to publish

and receive an increasing number of events.

An order management system may receive

orders from a Web site or an order entry

application and notify other systems of the

new order. Systems interested in new orders might be the financial system, which will see

whether the order is backed with a credit line or a valid credit card to charge, and the

warehouse, which verifies that inventory to fulfill the order is present. Each of these

systems might then publish another event to any interested party. The shipping system in

turn might wait for both an Inventory Allocated and Payment Processed message and in

response prepare the goods for shipment. This event-based style of interaction is notably

different from the traditional command-and-control style that would have the warehouse

ask for the inventory status, wait for an answer, and then ask the financial system to

process the payment. Next, the order management system would wait for a positive

answer and lastly instruct the shipping system to send the goods.

Ware
house

Order

Entry

New

Order

Financial

Payment Processed

Shipping

Inventory Allocated

Programming Without a Call Stack - Event-driven Architectures

 © 2006 Gregor Hohpe. All rights reserved 2

But the event story does not end here. The warehouse

might detect that inventory is low and let other

systems, for example the procurement system, know.

When the customer’s credit card is about to expire we

might to be alerted so we can send an e-mail to the

customer requesting a new card number. The list of

interesting events goes on and on. David Luckham

[POE] coined the term “Event Cloud” to describe the

interchange of many events between multiple systems.

Event-driven Architectures
So what defines the step from simply exchanging information through events to a full-

fledged event-driven architecture (EDA)? EDAs exhibit the following set of key

characteristics:

• Broadcast Communications. Participating systems broadcast events to any interested

party. More than one party can listen to the event and process it.

• Timeliness. Systems publish events as they occur instead of storing them locally and

waiting for the processing cycle, such as a nightly

batch cycle.

• Asynchrony. The publishing system does not wait

for the receiving system(s) to process the event(s).

• Fine Grained Events. Applications tend to

publish individual events as opposed to a single

aggregated event. (The further apart the

communicating parties are, the more may

physical limitations limit how fine grained the

events can afford to be)

• Ontology. The overall system defines a nomenclature to classify events, typically in

some form of hierarchy. Receiving systems can often express interest in individual

events or categories of events.

• Complex Events Processing: The system understands and monitors the relationships

between events, for example event aggregation (a pattern of events implies a higher-

level event) or causality (one event is caused by another).

Event-driven architectures (EDA) tend to exhibit an aura of simple elegance. Because

these systems are modeled after real world events the resulting system model is usually

very expressive. These desirable benefits have already motivated some EAI (Enterprise

Application Integration) vendors to proclaim that EDAs are the next step in the evolution

beyond Service-oriented Architectures (SOAs).

Good Bye, Call Stack
However, the simple elegance of EDAs can be deceiving. Designing such a system

correctly can actually be more challenging than it may initially appear. As we saw above,

New Order

Address

Changed Credit Card

Expired

Payment

Declined

E-mail

ReturnedOrder
Entry

Mail
Gateway

Ware
house

Event
Cloud

Web
Site

Inventory

Low

Shipping
PartnerTruck

Delayed

Financial
System

EDA Key Characteristics

• Broadcast communications

• Timeliness

• Asynchrony

• Fine Grained

• Ontology

• Complex Event Processing

Programming Without a Call Stack - Event-driven Architectures

 © 2006 Gregor Hohpe. All rights reserved 3

one of the key properties of event-based systems is the simplified interaction between

components that is restricted to the exchange of events. Therefore, in order to understand

the design implications of an EDA we should not look at what an EDA introduces, but

should begin by examining what an EDA is taking away. An event-based architecture

takes away what must be one of the most pervasive and underappreciated constructs in

programming – the call stack.

Call stack based interaction allows one method to invoke another, wait for the results, and

then continue with the next instruction. This behavior can be summarized as three main

features: coordination, continuation and context. Coordination provides for synchronized

execution, i.e. the calling method waits for the results of the called method before it

continues. The continuation aspect ensures that after the called method completes the

execution continues with the statement following the method call. Lastly, the call stack

holds local variables as part of the execution context: once the method invocation

completes the caller’s entire context is restored.

The interaction between components in an EDA does not provide any of these functions –

the interaction is limited to one component

publishing an event that can be received (usually with

a delay) by one or more other components. There is

no inherent coordination, continuation or context

preservation. Why would one want to eliminate these

tremendously useful features that every developer has

come to appreciate? The answer lies in the fact that

the convenience of the call stack comes at the price

of assumptions. While assumptions per se are not

necessarily a bad thing, it is important to make them

explicit so one can evaluate whether the desired

execution environment matches the assumptions or

not. So let’s have a quick look at the key assumptions

that accompany the ever-present call stack.

First, a call stack is primarily useful in environments where one thing happens after

another. The fact that a single return address is pushed onto the stack implies a single

path of execution where the caller’s execution does not continue until the called method

completes. The distinct advantage is that the called

method does not have to have worry about

synchronization or concurrency issues. Because the

call stack prefers a single line of execution it

implicitly assumes that method invocations and

executions are fast compared to the execution of the

primary code. This makes it practical for the caller to

wait for the callee’s results before it continues

processing. If invocations are slow or carry a large

overhead this assumption could become a liability.

For example, this is the very reason Web services-

based architectures are moving away from an RPC-based to a message-based

communication style.

Call Stack Assumptions

• One thing happens at a time

• We know what should
happen in what order

• We know who can provide a
needed function

• Execution happens in a
single virtual machine

Programming Without a Call Stack - Event-driven Architectures

 © 2006 Gregor Hohpe. All rights reserved 4

More subtle but equally important is the assumption that the systems knows what should

happen in what order. Because one method calls another method directly the calling

method has to have a pretty clear idea of what it wants to happen next.

Not only is the caller assumed to know what is supposed to happen next but the caller

also has to be aware which method can provide the desired functionality. It might seem

odd at first to separate knowing what to do from knowing what method to invoke. After

all, methods are (or at least should be) named after the function they accomplish. Still,

having one method call another method directly means tying the execution of a specific

piece of functionality to the invocation of a specific method. Often, this direct linkage has

to be established at compile time and is not easily changed afterwards. In many cases this

linkage is not a problem. It seems perfectly acceptable for me to call customer.setName()

to set a customer’s name. If need be, polymorphism can provide for a level of indirection

between caller and executor so that a subclass of customer can sneak in a different

implementation of setName.

Last but not least, the call stack flourishes in an environment where caller and callee

share the same memory space. This allows compiler and linker to insert direct references

to methods and keep method call overhead small. Also, a single memory, single

processor environment is inherently geared towards sequential execution, which is again

matches nicely with the call stack mentality.

Focus on Interaction
A call stack defines a specific interaction style between components, one that is equally

popular and well understood. Because a call stack is assumed to be the standard mode of

interaction most object-oriented design tends to focus on the structural aspects of the

solution over the aspects related to interaction. This is generally appropriate for most

object-oriented systems that exist in a single memory space and are under the control of a

single development team, i.e. systems that fulfill the basic assumptions required by a call

stack.

Traditional object-oriented design does not ignore interaction altogether. Some of the

classic design patterns presented in [GOF] concern themselves with the way objects

interact. For example, the Mediator “encapsulates how a set of objects interact” while the

Observer “notifies all dependent objects of a state change”. Both patterns elevate the

interaction between objects from their shadow life to become first class players in the

object model. These patterns give us a hint that looking at the way components interact

can be more interesting than might at first appear.

In distributed systems the cost of interaction goes up significantly and the significance of

interaction suddenly increases dramatically. At the same time structural aspects can move

into the background as distributed systems often do not provide for rich structural

mechanisms such as inheritance, polymorphism and the like. For example, this shift of

attention from structure to interaction is at the heart of many of the debates on service-

oriented computing. Service-oriented architectures have rather simple composition rules

but pay close attention to loosely coupled interaction between systems.

Programming Without a Call Stack - Event-driven Architectures

 © 2006 Gregor Hohpe. All rights reserved 5

To Couple or Not to Couple
Service-oriented architectures have brought the notion of coupling into the forefront of

our minds. Coupling is a measure of the dependency between two communicating entities.

The more assumptions the entities make about one another the more tightly coupled they

are. For example, if the communicating entities use a technology specific communication

format they are more tightly coupled than entities that communicate over a technology-

neutral format. Loose coupling is desired in situations that require independent variability,

for example because the communicating entities are under control of different

organizations. Looser coupling and therefore fewer assumptions leave more room for

variation.

The way components interact also impact coupling between entities. The more rules and

assumptions the interaction protocol prescribes, the more coupling between the

components is introduced. Simpler interaction rules imply less coupling because fewer

constraints are imposed on the participating entities.

Two primary strategies can help reduce the coupling that results from the interaction

between components:

1) Insert a level of indirection

2) Simplify the rules of interaction

It has been postulated that in the field of computer science any problem can be solved

simply by adding an additional more level of indirection. Of course, the problem of

coupling is not immune to this approach. If we want to avoid one component to interact

with another component without being

directly linked to that component we can

insert a component in the middle to isolate

the two. In the object-oriented world this is

exactly what the Mediator pattern [GOF]

does: one object calls the mediator, who in turn figures out which other object to call.

This approach improves reuse between objects because the interaction between them is

extracted into a separate element, which can be configured or changed without having to

touch the original components. The same approach lays the foundation of message-

oriented architectures [EIP]. Instead of communicating directly, components send

messages across event channels.

The second aspect of coupling focuses on the rules of the interaction. A call-stack

oriented interaction has fairly strict rules: one method calls the other and waits for the

results of the invocation. Subsequently, execution always continues where it left off. One

way to reduce coupling between the interacting parties is to simplify the rules of the

interaction. If we remove the continuation and coordination aspects of the interaction, all

that is left is the fact that one component sends data to another component. We would be

hard pressed to define a form of communication that is even simpler while still being

worthy of the name interaction.

System

B

System

A

Message
Channel

(Queue)

Programming Without a Call Stack - Event-driven Architectures

 © 2006 Gregor Hohpe. All rights reserved 6

What is in a Name?
The channel-based interaction introduces two new elements, a channel and a message.

Despite their simplicity these new elements open up options and force new decisions. A

deceivingly simple question is “how should the channel be named?” When one method

called another directly there was no intermediate element and therefore no decision to

make.

A very simple approach assigns each component its own channel. For example, a

component that deals with credit card validations could be called the CreditService and

react to messages sent on a channel named CreditService. If any component needs

something related to credit it could send a message to that channel. While the channel

gives us a level of indirection at the

implementation level (we could replace one

credit service implementation with another

without anyone noticing) the semantics of the

interaction are not much decoupled. The caller

still has to know which component provides the

functionality it requires, much like it did in the

call stack scenario.

To reduce the dependency on a specific service

we could name the channel analogous to a

method name. For example, if the service

provided an operation that can verify a credit

card supplied by a customer we might simply name the channel VerifyCreditCard. This

does increase the level of abstraction somewhat because the caller no longer has to know

which component is able to service this type of request. Service-oriented computing

generally follows this approach.

Despite the introduction of the channel the semantics of the interaction still smell like a

call stack. One component sends a request (“check this credit card”) and expects a

response (“card good” or “card bad”). But we have not yet exhausted the creative

possibilities of the channel semantics. The above examples assume that the component

knows that a credit card has to be verified. Can we lift this burden from the “caller”

altogether so that the components are truly decoupled? We can take the decoupling one

step further by changing the channel name (and the associated semantics) to

OrderReceived. This simple change in name signifies a significant shift in responsibility.

The message on the channel no longer represents an instruction but an event, a

notification that something happened. We also no longer assume that there is a single

recipient for the event. Again, the assumptions between the communicating parties have

been reduced. As a result, EDA is often considered to be more loosely coupled than SOA.

Shifting Responsibilities
Communicating through events as opposed to commands indicates a subtle but important

shift of responsibility. It allows components to be decoupled to the extent that the “caller”

is no longer aware of what function is executed next nor which component is executing it.

Credit

Service
A

CreditService

VerifyCreditCard
Credit

Service
A

Credit
Service

A
OrderReceived

Programming Without a Call Stack - Event-driven Architectures

 © 2006 Gregor Hohpe. All rights reserved 7

Another equally important shift of responsibility between caller and callee is that of

keeping state.

In a system that is based on queries and commands state is usually kept in one application

that is considered the “master” for the data. When another application needs to reference

that data it sends a query to the owning application and waits for the response before it

continues processing. For example, when the order management system needs to fulfill

an order it queries the customer management systems for the customer’s address so it can

tell the shipping application to send the shipment to that address.

Event-driven systems work differently, almost to the inverse. Systems so not query

systems for information but instead keep their own copy of the required data and listen to

updates as they occur. In our example this

would mean that the shipping system keeps

its own copy of the customer’s address so

when an order arrives it can use that address

to label the shipment without having to query

the customer management system. While

replicating data this way might seem

dangerous it also has advantages. The

customer management system simply

broadcasts changes to the data without having

to know who all keeps a copy. Because the

customer management is never queried for

address data it never becomes a bottleneck

even as the system grows and the demands

for addresses multiply.

The principle behind the shift in responsibility is once again tied to the concept of

coupling. In a loosely coupled interaction a source of data should not be required to keep

state at the convenience of its communication partners. By shifting the burden of keeping

state to the consumer the component is can be completely oblivious to the needs of the

data consumers – the key ingredient into loose coupling. The shift away from the query-

response pattern of interaction means that many components have to act as event

Aggregators [EIP]: they listen to events from multiple sources, keep the relevant state and

combine information from multiple events into new events. For example, the shipping

system effectively combines address change events and order events into request for

shipment to a specific address.

Complex Events
An EDA can offer more benefits than loose coupling and independent variability. A

system where components interact only through events makes it easy to track the all

interaction and analyze them. A whole new discipline has emerged around the analysis of

event sequences and the understanding of event hierarchies. For example, a rapid series

of similar request events to a Web server might mean that the server is under a distributed

denial of service attack. The fact that this sequence of request events occurred is in itself

a meaningful event that should be published into the event cloud. This type of event

hierarchy is the subject of Complex Event Processing or CEP [POE].

RequestForAddress

Order

Management

Address

SendShipment

Customer

Management
Shipping

Order

Order

Management

Address

Change

Customer

Management
Shipping

Order

Programming Without a Call Stack - Event-driven Architectures

 © 2006 Gregor Hohpe. All rights reserved 8

Instant Replay
Event-based systems can exhibit another enormous benefit. If all interaction in a system

occurs through events one can recreate the system state from scratch simply by replaying

all events. Financial systems typically fall into this category. An account not only keeps

its current state (i.e. the balance) but also maintains the history of all events that affected

the account (i.e. deposits, withdrawals). Martin Fowler calls this approach Event

Sourcing [EAA].

Event sourcing application exhibit two valuable properties. First, the system state can be

recreated even if the state of an individual component was lost. By replaying all events to

the components each component can sequentially recover the state it was in without

resorting to other persistence mechanisms. More interesting even is the ability to replay

the events but with changes. In a sense, we can rewrite history by inserting changes into a

past stream of events and then replay the revised event stream. This feature can be

invaluable in real-life scenarios. For example, a customer who orders a certain amount of

goods over the year may qualify for a year-end rebate. If a customer’s orders just exceed

the limit but the customer returns an item in the new year he should not get the rebate.

Traditional systems implement specific logic that checks whether a return moves the

customer below the threshold and debits the customer with the rebate they originally

received. An event sourced system can solve this situation more elegantly. A returned

item voids the original “purchase” event. Subsequently we can replay the revised series

of purchase events, skipping the voided event. The associated business logic will

compute the customer’s final account balance, not including the rebate. We can then

compare the revised scenario with the original and compute the adjustment without

having to understand the original business logic (i.e., when a rebate is paid). One can

easily see that for complex business rules event replay can be an invaluable feature.

Composition
So where is the catch? EDAs apparently exhibit a series of desirable properties. But the

flexibility that the loose coupling affords usually comes at a price. This price amounts to

less build-time validation and the fact that a highly composable system allows us to

compose it in many ways that do not make a lot of sense or do not do what we had in

mind. For example, an event source and a listener might accidentally be configured for a

different type of event or channel, potentially the result of a trivial typo in the name. As a

result the event sink will not receive any events at all. However, we do not find out until

we start the system and even then it can be difficult to determine the actual source of the

problem. Is the listener listening to the wrong event? Is the sender sending the wrong

event? Is the event source publishing any events at all? Is the event channel interrupted?

The configurability can suddenly turn into a debugging liability. This is exactly what

Martin Fowler warns us of when he describes “the architect’s dream, the developer’s

nightmare”.

With variability comes uncertainty. If the system architecture allows the individual

components to evolve, tomorrow’s system may look different than yesterday’s system. It

is therefore imperative to create tools that help with configuration and analysis. The

composition of individual components into a coherent, event-driven application should be

viewed as an additional layer of the overall system architecture. This layer should be

Programming Without a Call Stack - Event-driven Architectures

 © 2006 Gregor Hohpe. All rights reserved 9

taken as seriously as the core code layers. All too often is this type of composition

information (e.g. the names of published or subscribed event channels) hidden away in

cryptic configuration files that are scattered across machines. Instead, one should define a

domain language specifically for the composition layer. This language could include

validation rules that flag valid configurations. For example, a configuration which

prescribes an event subscription that does not match any publication may be considered

invalid. Likewise, circular references in the event graph may be undesirable and should

be detected at design time.

Visualization
In a highly distributed and loosely coupled system, determining the actual system state

alone can be challenging because they continue to evolve continuously. To make matters

worse, critical information is

often spread across many

machines. In these situations it

can be invaluable to generate

system model from the

running system. This can be

accomplished by

instrumenting the running

system with sensors, which

track the sending and

receiving of messages. The

sensors forward the harvested

information to a central

location that maps it onto an

abstracted system model, for

example a directed graph.

Such a graph can then be run through a graph rendering algorithm such as AT&T

GraphViz [VIZ]. The result is a human-readable, accurate model of the systems structure.

Such a model and diagram can be invaluable for debugging and analysis.

Summary
Event-based systems can offer an interesting alternative to traditional command-and-

control system design. EDAs enable loosely coupled, highly composable systems that

often provide a close mapping to real-life events. Using events consistently as the

interaction mechanism between components enables techniques such as event replay,

which can be very difficult to accomplish in traditional designs. However, all these

benefits come at a price. Systems that pass up the well-known tenets of a call stack in

favor of loosely structured interaction are inherently more difficult to design and debug.

Therefore, one should employ management and visualizations tools to create a system

that is dynamic but not chaotic.

AA BB

Renderer

A � X
X � B

A B
X

A B
X

Model

Mapper

Nodes: A, B
Edges: X(A->B)

Running System

Channel X

Instrumentation

System

Model

Programming Without a Call Stack - Event-driven Architectures

 © 2006 Gregor Hohpe. All rights reserved 10

References
[CSP] Communicating Sequential Processes, C.A.R. Hoare, 1985, Prentice Hall, on-line

at http://www.usingcsp.com

[EAA] Further Patterns of Enterprise Application Architecture, Martin Fowler,

http://www.martinfowler.com/dev/eaa

[GOF] Design Patterns, Gamma et al., 1995, Addison-Wesley

[EIP] Enterprise Integration Patterns, Hohpe, Woolf, 2003, Addison-Wesley,

www.eaipatterns.com

[POE] The Power of Events, Luckham, 2002, Addison-Wesley, www.complexevents.com

[VIZ] GraphViz Graph Visualization Software, http://www.graphviz.org/

About the Author
Gregor Hohpe is a software architect with Google, Inc. Gregor is a widely recognized

thought leader on asynchronous messaging and service-oriented architectures. He co-

authored the seminal book "Enterprise Integration Patterns" and has been working

extensively with the Microsoft Patterns & Practices group. Gregor is a MVP Solution

Architect and speaks regularly at technical conferences around the world. Find out more

about his work at www.eaipatterns.com.

