
Copyright ThoughtWorks, Inc. 2002

Test-Driven Development in
Enterprise Integration Projects

November 2002

Gregor Hohpe
Wendy Istvanick

Copyright ThoughtWorks, Inc. 2002 Page i

Table of Contents
Summary... 1
Testing Complex Business Applications... 2

Testing – The Stepchild of the Software Development Lifecycle?... 2
Test-Driven Development... 2
Effective Testing... 3
Testing Frameworks... 3
Layered Testing Approach ... 4

Testing Integration Solutions.. 5
Anatomy of an Enterprise Integration Solution... 5
EAI Testing Challenges.. 6
Functional Testing for Integration Solutions... 7

EAI Testing Framework ... 11
Design for Testability... 13
Web Services and Service-Oriented Architectures....................................... 14
Non-Functional Testing ... 15
Conclusion.. 15

ThoughtWorks® is a registered service mark of ThoughtWorks, Inc. in the United States and/or other countries.
All other product and company names and marks mentioned in this document are property of their respective
owners and are mentioned for identification purposes only.

Copyright ThoughtWorks, Inc. 2002 Page 1

Summary
If testing software applications is a good idea, testing enterprise integration solutions must be an excellent
idea. After all, integration solutions form the backbone of many modern enterprises, linking vital systems
and business processes with real-time data interchange. Any defect or outage in an integration solution is
likely to affect large portions of the enterprise, potentially causing loss of revenue and data.

Besides the obvious damage done to the business by defective software, the lack of a structured testing
approach also causes delays and unnecessary work during the software development cycle. A test-driven
approach integrates automated tests into the requirements and analysis phases of a project, resulting in
higher-quality applications and more expeditious integration and deployment cycles.

It is surprising then that so many integration solutions are deployed with little or no testing. Testing, if any,
is usually done manually and sporadically. One of the reasons integration solutions are not tested
thoroughly is the fact that testing asynchronous, message-based middleware solutions is challenging.
These solutions are complex, distributed, heterogeneous and asynchronous in nature. To make things
worse, there are very few tools available to aid in these testing efforts.

This paper examines the challenges of testing enterprise integration solutions and proposed a testing
approach to tackle the inherent complexities. This approach is accompanied by a framework that makes
integration testing more effective and efficient. Additionally, the paper discusses the implications of Web
services and service-oriented architectures on the proposed testing framework, and provides guidelines for
the design of new integration solutions to improve testability.

The presented approach and framework have been developed and enhanced over a series of integration
projects. The tools have helped accelerate a number integration projects and are continuing to undergo
refinement as integration technologies continue to evolve.

Copyright ThoughtWorks, Inc. 2002 Page 2

Testing Complex Business Applications
Testing – The Stepchild of the Software Development Lifecycle?
Testing computer software is a good idea. While pretty much everybody involved in building or using
computer systems would agree with this, software riddled with hidden defects continues to be deployed
into production environments. The consequences range from frustrated users to millions of dollars’ worth
in system outages and software maintenance expense. Testing is obviously not a novel idea and a number
of vendors sell testing methodologies and tools in pretty much any shape or form. So why are we not more
successful in creating bug-free, high-quality software?

The first part of the answer lies in the expression “high-quality”. Before we can claim that a piece of
software is of high quality we need to define what quality means to us. A high-quality system should not
have any defects. We can define defects as deviations from the functional specification. So if the system
behaves exactly like the specification we should be able to call it “high-quality”. What if the system
functions as specified, but not as expected? Also, what do we call a system that functions as specified but
is difficult to enhance and maintain?

Apparently, “quality” and “testing” cover a long list of possible characteristics. We typically divide the list
of requirements for a system into functional and non-functional requirements. Functional requirements
define the business functions the system needs to support. Non-functional requirements (sometimes
referred to as “ilities”) define attributes that relate to the operation or maintenance of the system, such as
scalability, maintainability, reliability, etc. Likewise, we can divide our testing efforts into functional tests
and non-functional tests. Functional tests verify functional specifications while non-functional tests verify
non-functional requirements. In addition to functional tests, developers execute “white-box” unit tests to
verify individual code segments that may or may not be directly related to a piece of functionality.

Even though requirements may be well defined and the correct approach to testing is well understood,
many projects still release buggy products. One common reason is the perception that “we don’t have time
to test more extensively”. This is usually the fact because testing tends to be the last phase before the
(firm) release date, and any slippage in the requirements or development phases are compensated for by
shortening the testing phase. In most cases, any “savings” in the testing phase are then paid for in multiples
during the maintenance of the prematurely released software.

Test-Driven Development
One effective way to avoid unclear requirements and a “too little too late” testing approach is to integrate
testing into the requirements analysis and development phases of the project. By integrating these efforts
we can help close (or reduce) the gap between requirements definition, solution development and testing.
One of the reasons testing is usually deferred until the end of the lifecycle is the inevitably high rate of
change during the development phase. Testing tends to be labor-intensive and it is not realistic to change
the test scripts and re-exercise all test cases every time a code change is made. This perceived conflict can
be resolved if we can automate testing to the point where a suite of test cases can be executed
automatically, actual results are compared to desired results and deviations are summarized in a report.
Now we can run the tests as often as we like since no or very little human intervention is required.

But won’t it take an inordinate amount of time to code and maintain all the test cases? There is no question
that coding test cases initially requires additional analysis and development time. On the other hand, we
can consider these test cases part of the requirements specification process. What better specifications than
a set of executable test cases? Also, coding test cases during the analysis phase encourages communication
between customers, analysts and developers. It helps minimize the development of unnecessary
functionality and provides the foundation for fast-paced, iterative development. Thus, it contributes to
project scope management, project risk management, project schedule management, project cost
management and project communications management. If we can leverage a common testing framework,
these benefits more than outweigh the time required to code the individual test cases.

Copyright ThoughtWorks, Inc. 2002 Page 3

This approach can be summarized as Test-First
Development or Test-Driven Development. Test-
driven development implies that rather than deferring
testing until the end of the project we move it to the
beginning of the lifecycle. Before developers code a
new piece of functionality they define and develop
the test cases describing the required functionality.
Then, they develop code modules until all test cases
succeed. Development occurs in rapid iteration
cycles between developing, verifying and correcting
code.

Effective Testing
In order to support a test-driven development approach, testing has to be comprehensive, accurate and
efficient. This generally requires the presence of a testing framework. In order to support an effective
testing strategy, such a framework needs to support the following requirements:

Simple Creation – Developers are more likely to write tests if they are easy to create (and managers are
also less likely to tell them that there is no time to write test cases).

Definitive Pass/Fail Criteria – A pass or fail answer gives developers and analysts a definitive answer on
whether a test is working or not. Often tests simply create logs that developers must analyze to decide if
the test passed or failed. Instead, the framework needs to verify results and deliver binary pass/fail results.

Reliable Failure – Tests need to fail when something is actually broken, and not when something has
merely changed. Traditional automated testing approaches are often brittle, breaking with every change.
This provides little useful feedback, and often creates more work than it saves.

Push Button Repeatability – Tests must be easily repeatable or they quickly become neglected. An
automated test framework enables repeatability by defining a common way of executing test cases and
reporting test results.

Extensibility – The testing harness needs to be extensible so developers can extend the framework to
include specific technical and business requirements.

Testing Frameworks
Automated testing relies on the programmatic execution of test scenarios and the verification of the results
against the expected outcomes. Efficient development and execution of test cases can be accomplished by
using a testing framework. A testing framework provides reusable components to organize and execute test
cases and verify and report test results.

A testing framework consists of the following core components:

G

ComponentComponent

Test Data
ComponentComponent

V
Test Results

ComponentComponent

S
Request Expected

Response

Generator Verifier Stub

Figure 1: Testing Framework Components

A test data Generator creates test data and feeds it into the component under test. There are a number of
strategies for the creation of test data. Test data can be read from a script file that contains instructions on
the test execution as well as test data. The data is translated into function calls (or messages) to the
component. Another common source of test data is a capture / replay mechanism which captures test data
output by an external application or another test case and stores it for replay. A third option is the random
or algorithmic creation of test data. This option has the advantage that a long series of unique test cases can

Define
Tests

Define
Tests ReleaseRelease

Code

Verify

Test-First Development

Copyright ThoughtWorks, Inc. 2002 Page 4

be created, but generally requires additional development effort. Complex systems may require thousands
of test cases so that it makes sense to use additional tools to organize the suite of test cases hierarchically.

A test result Verifier compares actual test results with expected results. It is important that a verifier makes
an accurate, binary decision whether a test was successful or not. Expected results can be prescribed in a
way similar to the test data generator. In most cases, the expected results are part of the test script. If an
algorithmic or random test generator is used, the verifier needs to communicate with the generator and
compute the expected results for each test case. For example, if a test data generator generates random line
items for an order the verifier needs to compute the total and compare it to the actual billed amount
resulting from the order. In most cases, verifiers are tied into a reporting mechanism that reports on the
number of test cases that were executed and the exceptions that were encountered.

A Stub is a testing component that simulates part of the system that is not under test. The component under
test may depend on another component that may not have been completed yet or would introduce
undesirable side effects into the test. Therefore, we replace the external component with a substitute called
a stub. The stub receives data from the component under test and returns “dummy” data so that the
component under test can continue processing. The response can be fixed, driven by a script or
algorithmically derived from the request.

Layered Testing Approach
An effective functional testing strategy needs to account for dependencies between components. As much
as possible, we want to unit-test components in isolation so that we are not distracted by possible faults in
other components. As we integrate the system and conduct integration testing we want to proceed in a way
that we integrate new components into an already tested subset so that we can constrain the possible
sources of error to the new component or the interface between the new component and the existing
components.

Well-architected systems tend to be organized in multiple layers with each layer depending only on ‘lower’
layers. The lower layers contain generic functions that are used by the more specific functions in the upper
layers. Forcing one-way dependencies between upper and lower layers avoids circular dependencies
between components. It also clarifies the process of unit and integration testing as outlined in the following
sections:

Unit / Component Testing

Unit testing focuses on a specific component in the system. We want to eliminate outside dependencies as
much as possible when testing a single component in isolation. This is easy if we are dealing with low-
level components that do not have many dependencies. Therefore, we can use a test data generator to feed
test cases into the component and use a verifier to examine the results (see component A in Figure 2). For
higher-level components we need to stub out any dependent components to focus solely on the component
under test (also, some of the dependent components may not have been built yet). Therefore, we use a stub
to simulate any external components that it may depend on. The advantage of this testing approach is that
we can test in isolation, allowing us to test multiple components from different layers in parallel. Because
unit testing is limited to looking only at a small portion of the system at a time it may not discover
integration issues between components. However, testing at this level ensures that when integration begins
we can have confidence in the functionality of each component being integrated.

BB

CC

AA AA

BB

CCG

S
S

Layers

AA

V
G V

G V

Figure 2: Unit Testing a Layered Architecture

Copyright ThoughtWorks, Inc. 2002 Page 5

Integration Testing

Integration testing focuses on the interaction between multiple components. The integration testing
strategy focuses on the lower layers first because they have the least external dependencies. Testing the
lower layers first also reduces the amount of uncertainty when testing the upper layers. If an integration test
case fails in the upper layers, it is unlikely that the reason is a faulty lower-layer component since these
components have already been tested. Therefore, we can narrow our scope for debugging to the new
component or the interaction between the new component and already tested components. As a result, this
integration testing approach is referred to as “bottom-up” testing (see Figure 3).

BB

CC

AA AA

BB

AA

BB

CC

AA

Layers

G V
G V

G V

Figure 3: Integration Testing a Layered Architecture

Again, we use test data generators and verifiers to drive the automated test.

Testing Integration Solutions
Anatomy of an Enterprise Integration Solution
Test-driven programming has been used successfully in many application development efforts. In order to
understand how to leverage some of these benefits in enterprise integration projects, we first need to have a
closer look at what these integration solutions look like.

An enterprise integration solution typically consists of the components depicted in Figure 4.

Monitoring / Analysis

Message Bus

Process Management

ApplicationApplication

AdapterAdapter

Repository

ApplicationApplication

AdapterAdapter

Transformation

Information
Aggregation /

Portal

External
Partner

External
Partner

External
Partner

External
PartnerInternet /

Extranet

Figure 4: Anatomy of an EAI Solution

A common Messaging Infrastructure or Message Bus enables secure and reliable communication across the
enterprise network. The message bus has the ability to route messages between message publishers and
message subscribers. It queues messages if a subscriber is not available, relieving the publisher from the
need to store and resend messages.

Applications publish data to or receive data from the message bus via Adapters or Connectors. These
connectors make an application’s proprietary interface available to other applications via the message bus.

Copyright ThoughtWorks, Inc. 2002 Page 6

Because different applications represent data in different ways, Transformation functions translate an
application’s proprietary data format into a common data format that can be understood by other
applications. Without this transformation capability the message bus resembles a telephone system that
provides a common network, but connects participants speaking different languages.

Once we have a message bus, adapters, and data transformation functions to implement reliable data
exchange between multiple applications, we can model Business Processes that represent a series of
actions, each carried out by a different application. For example, a ‘New Order’ process may need to verify
the customer’s credit rating, check inventory, fulfill the order, track shipment, compute taxes, invoice the
customer and track payment. Naturally, a number of systems would collaborate in such a process, some of
which may be external to the enterprise. The business process management component of the EAI solution
provides tools to model the rules that guide such a process and manages the execution of long-running
business transactions.

A common Repository stores business rules and business object definitions, such as ‘Order’, ‘Customer’ or
‘Line Item’. These common definitions allow for loose coupling between applications and make the
business process definition independent of any application’s proprietary data format. This type of
information describing the format of message data is referred to as Metadata.

Once we integrate applications and business processes through an EAI solution, we can interface more
easily with External Partners such as suppliers, distributors or customers. Special adapters convert internal
messages into Internet-compatible protocols such as XML over http. Additional encryption secures
information traveling over the public Internet.

Another significant advantage of an integrated message bus is the ability to display information from
different applications in a single Portal. Portals aggregate information from multiple systems and display it
in a consistent, user-definable format. Some portals merely display information (e.g., management
information portals) whereas others allow users to generate business transactions in the form of middleware
messages (e.g. an order entry portal).

A typical EAI solution spans a significant number of applications, often times distributed across multiple
locations. Centralized, real-time Monitoring of all components quickly becomes a critical function of
successful enterprise integration. Monitoring evaluates the health of all components and triggers a restart

or fail-over action if a failure is detected.

The different components of an integration solution can be
arranged in a layered ‘stack’ in a way that each layer builds on
the layers below (see diagram): the message bus is the basis for
applications and adapters to communicate. Data transformation
translates messages exchanged between these applications.
Business processes operate on top of transformed, standardized
messages, whereas external integration and portals are enabled
by the integrated processes. Lastly, system functions such as
security, metadata management and systems management
support the overall solution.

EAI Testing Challenges
Enterprise Application Integration (EAI) solutions enable the connection of separate systems via a common
information infrastructure. Integration solutions consist of a significant number of components and spans
across many different pieces of functionality. In order to test an integration solution effectively, all parts of
the solution have to be addressed. Besides sheer scope and complexity, effective testing of an integration
solution provides a number of additional challenges as compared to testing business applications:

• EAI environments are inherently heterogeneous. Application development environments tend to be
much more homogeneous so that a single testing tool such as jUnit /xUnit can cover the vast majority
of unit test cases. An EAI solution, however, may span across multiple languages and platforms,
including mainframe legacy systems. This makes the generation of test cases as well as the capture
and comparison of test results significantly more difficult.

Message Bus

AdaptersAdapters

TransformationTransformation

Business Process MgmtBusiness Process Mgmt

External
Integration
External

Integration
Information

Portals
Information

Portals

SecuritySecurity Metadata
Repository
Metadata

Repository
Systems
Mgmt.

Systems
Mgmt.

ApplicationsApplications

Copyright ThoughtWorks, Inc. 2002 Page 7

• EAI solutions typically integrate a set of packaged or custom applications. Generally, access to the
internal structures of these applications is limited, making it difficult to verify the success of a test
case. Worse yet, some of the applications may be external to the enterprise, making access even more
challenging. For example, how can we verify that the test case ‘Charge the customer’s credit card’
succeeded?

• Since an EAI solution works with complex applications it may not be possible to re-create a dedicated
test environment. Internal as well as external services may not provide separate environments just for
testing. How can we test charging a credit card or shipping and tracking a package if we have no
dedicated test environment?

• Most application testing is synchronous: a test harness calls a specific function and the actual results
are available immediately and can be compared to the expected result. EAI solutions typically rely on
asynchronous messaging. As a result, an EAI test case may send a message to a component, but may
not receive an immediate response.

• The asynchronous nature of message-based integration also causes a new category of potential
problems. Asynchronous, message-based systems may suffer from concurrency problems and
temporal conditions similar to distributed or highly parallel applications. These problems are very
difficult to test and diagnose.

• Many business processes depend on timed events. For example: send an e-mail to the customer if the
shipping of an item is delayed by more than three days. In order to test this function we need to either
wait three days or be able to manipulate the system time across multiple systems.

• The minimal unit of test in an EAI solution tends to be larger and more data driven than in application
development. Testing a single method of a Java or C# class generally requires only a moderate amount
of preparation. On the contrary, testing a single integration function may require complex data setup
inside multiple packaged applications. For example, to test an order function, we may have to
configure a catalog of products as well as a customer list.

• Testing tools are not yet readily available. Many EAI vendors have been focusing primarily on
integration functionality and messaging rather than testing support. Most generic testing tools on the
other hand focus on application testing or user interface testing. Also, the vendor-specific APIs of
most EAI suites require testing tools to be customized to each specific vendor.

• Integration solutions are becoming increasingly complex. Many integration tools and methodologies
are still geared towards situations where EAI meant simple data exchange between two applications.
Contemporary integration solutions typically consist of a combination of complex transformations,
processes and actual business logic, which makes testing much more time consuming and complex.

Functional Testing for Integration Solutions
We described the benefits of a layered, bottom-up test approach which tests the lower layers first and then
works “up the stack” layer by layer. We can
apply this approach to the integration stack
as defined in the previous section, beginning
with the message bus and working our way
up to external integration and information
portals. In most cases, the EAI vendor
provides the message bus layer as a black
box layer that is not customizable. As a
result, the bus itself does not have to be
subjected to functional tests. However, the
bus is often times the focus of non-functional
testing such as scalability, performance, fail-
over behavior, etc. Accordingly, the first
phase of functional testing of an EAI
solution will focus on the applications and associated adapters. These tests confirm that the applications

Test
Sequence

4

3

2

1
Message Bus

AdaptersAdapters

TransformationTransformation

Business Process MgmtBusiness Process Mgmt

External
Integration
External

Integration
Information

Portals
Information

Portals

SecuritySecurity Metadata
Repository
Metadata

Repository
Systems
Mgmt.

Systems
Mgmt.

ApplicationsApplications

Copyright ThoughtWorks, Inc. 2002 Page 8

can produce or consume the correct messages. Once the behavior of the participating applications has been
confirmed, transformations between different message formats can be tested. Once the communication in a
standard message format is confirmed, we can test the business processes that operate on top of the
standard messages. Last, we can focus on integration between external partners and information portals.

The fact that we integrate a solution from the bottom up does not mean we have to build the whole
integration solution layer by layer. In fact, this would be contrary to an agile and iterative development
approach. The layered testing and integration approach can be used for functional slices of the solution, i.e.
we can integrate and test the adapters, transformations and process definitions for a single interaction of an
overall integration solution. In the next iteration, we can develop, test and integrate another interaction.

The following sections describe how each of the individual layers of an EAI solution can be tested.

Testing Applications and Adapters

The lowest-layer building blocks of an EAI solution are usually packaged or custom business applications -
- pretty complex pieces in themselves. Since EAI solutions act as the glue that holds together many
disparate systems, they must provide interfaces or adapters through which each of these systems can be
invoked or accessed.

Before we start testing an integration solution, we need to be sure that the applications themselves function
correctly. This is less of an issue with packaged applications that are likely to have been tested before they
were shipped. If we deal with custom applications, we need to make sure that these applications have been
tested using traditional test methods before we start integrating. This is important to reduce the number of
potential sources of error and to simplify defect analysis and correction.

Assuming that the applications work correctly internally, the EAI tests focus on the added interfaces and
adapters. In the basic case, we can test the interface by sending a message in the data format expected by
the adapter, invoking the component through the interface, and comparing the result returned through the
interface to what would be returned by the application if it was invoked directly from the API (Scenario 1).

G V

ApplicationApplication

AdapterAdapter

Bus

G

VApplicationApplication

AdapterAdapter

Bus

Scenario 1 Scenario 2

ApplicationApplication

AdapterAdapter

Bus

Scenario 3

G1 VG2

G

V

ApplicationApplication

AdapterAdapter

Bus

Scenario 4

Figure 5: Testing Applications and Adapters

In some cases, however, the application will not return a response to the test message or may produce a
message that contains insufficient data for a meaningful test result. In this case we may need to use a
verifier that has direct access to the application interface or the application’s data store (Scenario 2).
Verifying the internal structures of business applications can be very complex depending on the nature of
the application. Most applications store their internal state in a relational database so that we can use
database verifiers to ensure the correctness of the business transaction. However, this approach requires
detailed knowledge of the applications data model and can be cumbersome in situations where the
application’s data model is highly normalized. In some situations, we can use a separate message to query
the state of the application instead of accessing the application directly (Scenario 3). In this case, we use
two test data generators. The first generator sends the test data to the application in the form of a message.
The second generator sends a ‘read’ message to the application to verify the results of the first message. In

Copyright ThoughtWorks, Inc. 2002 Page 9

most cases, the second generator can be quite simple as long as it obtains unique key information from the
first generator. If the application does not provide a function to retrieve this data, it can be a good example
of design for testability (see below) to add this function to the adapter.

Other test cases require the publication of messages to the message bus based on business events that occur
in the application. In this case, we need to use a test data generator that can trigger events inside the
application (Scenario 4). Similar to Scenario 2, we can trigger these events via the application’s API or by
manipulating internal data structures. We use a message verifier to check the correctness of the published
event. Similar to the previous cases we may be able to trigger the event by sending a specific message
through the adapter rather than modifying the internal data structures directly. The feasibility of this
approach depends on the application architecture and the adapter functionality.

Testing Transformations

Transformations can be tested relatively easily. We can simply provide input data for the transformation,
run the transformation, and compare the results to the corresponding expected output (see Figure 6).

Transformation

G V

Transformation

G2 V

Scenario 1 Scenario 2

Ext.
Source

G1

prep

Figure 6: Testing Transformations

Transformation tests can benefit from random test data generators to ensure robustness across a wide range
of input data. If the integration solution includes a well-structured metadata repository, tools for automated
test case generation can be employed. For example, some tools exist to create example XML documents
based on an XML schema definition. The success of this approach depends primarily on the level of detail
provided by the metadata repository. For example, automatically generated test cases will be more
meaningful if the repository allows the modeling of value constraints or dependencies between data
elements as opposed to basic data types such as ‘text’ or ‘integer’.

Some transformations rely on external data sources (e.g. look-up tables). In these cases, we need to make
sure that the test data correlates to the data contained in the external sources. We can either use a fixed set
of external data or prep the external data source with a separate generator (Scenario 2). Sometimes it
makes sense to equip transformation with a control port that allows the configuration of the transformer via
messages. This simplifies testing because we can send a message with prep data as opposed to
manipulating the database directly.

Testing Business Processes

The stateful nature of business processes makes testing more complex than transformations. Business
processes typically include decision points so that a single process can result in different outcomes based
on the decision criteria. Therefore, we generally need to run a suite of test cases against a single process in
order to obtain coverage of all possible execution paths of the process. To make things worse, many
decision points inside a process depend on external events or timed events. In many cases, we can trigger
external events by inserting stubs in place of the external system (see Figure 7). Since we have control
over the stubs we can instruct the stub to return different information depending on the test case we are
running. This feature can also be used to simulate failures. If the business process communicates directly

Copyright ThoughtWorks, Inc. 2002 Page 10

with an external system’s API things become more complicated. We would have to manipulate the
external system to provide the desired message back to the business process.

Testing timed events requires some additional thought. It is fairly common that a business process
branches based on a time delay. For example, if an order cannot be filled within three days, we want to
notify the customer with an e-mail message. There are a number of approaches to test these types of
functions:

• We can wait for three days. This test will be the most authentic, but will not work very well as part of
an automated test suite that we want to execute after every build cycle.

• We can make the delay configurable and set the parameter to 3 minutes (or 10 seconds) for testing
purposes. A short delay in the test script will then cause the process to branch off. Since we are sure
of the quality of the timer function itself, we can assume that the same thing would happen if the delay
were set to three days. However, these kinds of tests cannot simulate other timed dependencies. For
example, some other part of the process may be programmed to change some relevant data after two
days, causing our reminder e-mail to fail. Since we set our timeout to 3 minutes, we would not catch
this test case. To make this type of test more realistic we can change all timed parameters to a fixed
scale, e.g. we can change all ‘day’ units into minutes.

• We could also advance the system clock so that the business process thinks three days have passed.
This causes a more realistic simulation of timing dependencies between tasks. However, many
integration solutions span across multiple systems so that we have to adjust the time on all systems in a
consistent fashion. Changing the system clock can be a dangerous exercise since many processes rely
on the time increment to manage time-outs as well as software licenses. A safer way to manipulate the
system clock is to design the solution such that all integration functions retrieve the current time from a
single component. We could then manipulate this component to simulate timed events. The potential
downside is the additional overhead involved in accessing a remote component to retrieve the system
time.

• We could also design the business process so that a specific external message forces the process into
the exception path. Adding such a function for testing purposes simplifies testing a great deal, but it
does not correctly simulate timing dependences between multiple timed events.

Some would argue that by this level the testing has gone beyond unit testing and reached into the
integration testing area. While this would be true in the non EAI world, the nature of EAI forces testing to
occur in a more integrated way.

S S S

Bus

G V
Bus

Figure 7: Testing Business Processes

Testing business processes is a complex task. In many cases we will not be able to completely automate
the testing of a business process component from beginning to end. However, just because we can't
automate everything doesn't mean we shouldn't automate anything.

Copyright ThoughtWorks, Inc. 2002 Page 11

Testing External Interfaces / Portals

Since most portals are Web-based, testing portal solutions resembles testing generic Web-based
applications. Therefore, we can leverage common testing tools, including commercial products such as
WinRunner or SilkTest, as well as open-source tools such as httpUnit. Alas, user interface testing can be
an arduous task and can result in brittle test scripts, so it is important that all back-end functions be properly
tested so that the portal testing can focus primarily on the presentation and the interaction between user
interface and the messaging back-end.

Because portals can access a number of individual applications, setting up test data may become a labor-
intensive task. In many cases, though, we can leverage some of the data setup routines that we used to test
the application adapters or any business processes.

Testing integration with external partners is similar to testing integrated applications. The bigger
challenges usually lie in the lack of control over the test environment because it is usually owned by
another entity. This can eliminate any options to access these applications directly and can make
automated testing efforts more time consuming. Due to the stronger separation, design for testability is
even more critical for external interfaces. For example, we will likely not be able to access the external
application’s database to verify the successful completion of a transaction. Therefore, it is useful to add a
function to the interface that allows us to retrieve this information via messages.

EAI Testing Framework
Testing integration solutions is no simple task. In order to enable test-driven development and rapid
iteration, we need to leverage an automated testing framework so we can get consistent test results without
burdening the development or test teams with laborious test execution. Furthermore, automated testing has
the ability to change the dynamics of the development team in a way that testing is no longer seen as a
burden but becomes a natural part of the development process. This change in developer mindset is key to
test-driven development – for application development and enterprise integration alike.

In order to make the test framework efficient, we need to make sure it allows the developers to:

• easily write tests for new code they are creating

• quickly run those tests and the entire regression-test locally on a development machine before adding
new code to the code base

• automatically add new tests to the regression-test repository at the same time as new code is added to
the code base

• automatically and quickly run the entire regression-test suite against a new build of the code base

• quickly view the results of the automated regression-test run, both on a development machine and on
the build server

• receive automatic notification if their new code has “broken” any tests in the regression-test suite

As described earlier, an automated test framework has to provide test data generators, verifiers and test
stubs. When examining different testing approaches for applications and adapters we realized that sending
messages to the messaging bus alone might not be sufficient to thoroughly test an integration solution. We
also need the ability to stimulate events in applications or verify an application’s state directly. In addition,
we want the generator and the verifier to be driven by easy-to-maintain test scripts.

As a result of these requirements, we designed an EAI test data generator with the following internal
architecture (see Figure 8).

Copyright ThoughtWorks, Inc. 2002 Page 12

<xml><xml>

Test Script

XML
Parser
XML

Parser Test
Engine
Test

Engine

Plug-Ins
Bus

Test Data Generator System
under Test

Metadata
Repository

Figure 8: Test Data Generator Internal Architecture

The test data generator is driven by an XML input file which is human-readable, easily extendable and can
be parsed by any XML parser. The parser drives the test execution engine that interprets the commands
contained in the test script and converts the test data into the required format. The following listing shows
an example of a simple test script:
<test>

<tibco>
<publish message="test\xml\tibcoMessage1.xml"

subject=”subject.name.publish”/>
<subscribe var=”inbound” subject=”subject.name.subscribe”/>

</tibco>
<assert var=”inbound” path="order.total" value="56.10"/>
<assert var=”inbound” path="order.tax" value="2.34"/>

</test>

Since we need to be able to send middleware messages as well as trigger events in applications or pre-
configure look-up tables for transformations, we architect the data generator independently from the
transport and use plug-ins to support the individual transport mechanisms. Initially, we need to support
sending messages, making updates or inserts to a database or place a trigger file in a directory. File-
triggered testing is difficult because the file may be required on a machine different from the one executing
the test script. In this case we have three choices:

• We can ‘mount’ the remote file system (i.e. make it visible to the local machine)

• We can use a file adapter to create the file via the messaging infrastructure.

• We can use a file transfer protocol such as FTP to transmit the file.

 In the second case, we would send a message containing the file data to a remote file adapter which will
then create the file. File system mounting may be the easier option, but it makes the test suite more OS
dependent (it needs to know the exact path where the remote file system is mounted) and it may not be
available depending on the transport protocols that are available. FTP is a common protocol for file
transfer and may be a viable option. New plug-ins can be created depending on the testing needs, e.g. if we
have to make a direct API call to trigger a test case inside an application.

Many EAI solutions transfer data using a weakly typed data format that represents message data in a
generic tree structure. In order to assure creation of correctly typed messages, the test engine can access
the metadata repository and compare the message data from the test script to the metadata in the repository.
For the creation of coded test cases, the test framework can create object wrappers in a common
programming language such as Java to enable developers to easily create test data. These wrappers are
generated automatically from the metadata repository and result in a set of Java or C# classes that mimic
the structure of the middleware messages. The wrappers contain all the necessary code to convert between
the strongly-typed programming language and the middleware message format. Thus, generated wrappers
jump-start EAI testing significantly by allowing developers to code against regular objects rather than the

Copyright ThoughtWorks, Inc. 2002 Page 13

proprietary middleware API. A more detailed description on object-wrappers and EAI testing patterns can
be found in the ThoughtWorks whitepaper “Continuous Integration with TIBCO ActiveEnterprise”.

Report
Gen.

Report
Gen.

Style
Sheet
Style
Sheet

Report Bus

System
under Test

Test
Engine
Test

Engine

<xml><xml>Test Script XML
Parser
XML

Parser

Test Data Verifier

Plug-Ins

Figure 9: Test Data Verifier Internal Architecture

The test data verifier resembles a mirror image of the test data generator (see Figure 9). Plug-ins receive
data from various data sources, including messages, database queries and files. The data is then passed to
the engine which verifies the data with the expected outcome. The engine can also monitor the time that
elapsed between sending the test message and receiving the result. Based on the comparison between the
actual data and the expected data described in the script file, the engine generates an error report which is
then rendered into an HTML page.

In many instances, the test data generator and the verifier communicate with each other to exchange
information such as timing or unique keys that help the verifier identify the correct response message.

Design for Testability
As discussed in the previous sections, testing EAI solutions requires sophisticated tools and techniques.
Nevertheless, tools and techniques alone are not sufficient to test a poorly designed integration solution.
We can streamline our testing efforts significantly if we include testability into the development process as
a non-functional requirement.

When it comes to design for testability, the software world can learn a fair bit from microchip
manufacturers. The manufacturing process for microchips is very complicated and can introduce a variety
of errors into a chip. Once delivered and built into a device, there is little we can do to fix a defective chip.
Therefore, chip manufacturers design dedicated test interfaces into the chips that can be exercised before
the chip is shipped. These special interfaces give the test equipment access to many internal functions that
may be hidden from the outside interface. This makes testing more efficient because it can occur at a finer
level of granularity.

Translating this approach into the world of enterprise integration, we can design our components to support
additional test interfaces. For example, we can design an application adapter to support additional
transactions that retrieve the internal state of an application. Thus, we can design test cases that account for
an application’s internal state without having to test directly against the application’s database or API. We
can also design business processes to support special functions to query the internal process state or allow
us to inject specific test cases into the process. For example, we define a special message that triggers the
‘three days passed’ action without having to wait three days.

Besides adding test interfaces, basic design guidelines can also help us increase the testability of an
application significantly. For example, a set of small, loosely coupled components can enhance testability
enormously. Loosely coupled components interact with other components via messages as opposed to
direct interfaces. This allows us to stub out any external dependencies and simulate a variety of responses
to execute all possible execution paths within the component under test. Using small components reduces
the amount of uncertainty when testing a component. Smaller size means easier analysis and debugging as
well. Also, in the case of stateful components such as process definitions, the number of possible internal

Copyright ThoughtWorks, Inc. 2002 Page 14

states can increase exponentially with the size of the component. Often times, cutting a larger component
into two smaller components can cut the total number of required test cases in half.

We must not forget, though, that testability is only one of multiple non-functional requirements. Taken to
an extreme, design for testability can conflict with other non-functional requirements like performance and
maintainability. Creating a large number of small components can lead to network flooding due to the
number of messages being passed around between the components. Also, maintaining a huge collection of
components may turn out to be more difficult than a smaller number of medium-sized components. As
always, architecture is all about making trade-offs and often times a happy medium is the correct answer.

Another good design principle to increase the testability of components is to design narrow, well-defined
interfaces. Narrow interfaces reduce the number of possible test scenarios and aid in the automatic creation
of test cases. Rather than creating an interface with a generic ‘DoTransaction’ function, we prefer to create
a specific, more narrowly defined function such as ‘CancelOrder’. In some cases, the design of narrow,
specific functions seems to contradict the desirable principle of loose coupling. A generic function,
however, may reduce the syntactic coupling (I can pretty much do anything with a DoTransaction
function), but it does not reduce the semantic coupling (what am I actually doing?). Worse yet, such
generic functions disguise the semantics and make the creation of meaningful test cases very difficult.

Design for testability does not only relate to component design, but also to the development and
deployment tools. Many integration tools feature graphical editors that allow the user to design data
transformations and business process definitions. While graphical tools can be great design aids, they
generally are not very well suited to testing and deployment tasks. While designs favor rapid iteration and
visual communication, testing and deployment are all about repeatability and no need for human
intervention. Good integration suites allow the user to design test scenarios and deployment rules using
graphical editors but create executable scripts so that these procedures can be executed in a repeatable
fashion once they have been developed.

Web Services and Service-Oriented Architectures
It is difficult these days to talk about enterprise integration without talking about Web services. Web
services are a reality and the trend to service-oriented architectures will influence how we architect
integration solutions. How does this trend affect testing?

Web-services based solutions share a number of characteristics with EAI solutions. They consist of
distributed components or applications, developed in different languages and running on multiple
platforms, connected by a synchronous or asynchronous messaging infrastructure. As a result, many
guidelines for testing application adapters and transformations apply to Web services-based solutions.

The trend to service-oriented architectures brings some new aspects to testing. Service-oriented
architectures are based on the definition of a set of well-defined services that are provided by various
packaged and custom applications. New applications are then developed on top of these services (see
Figure 10).

Facade

Packaged
App

Packaged
App

Packaged
App

Packaged
App

Facade

ServServ

ApplicationApplication
Secur.Secur.

LogLog

Notif.Notif.

ServServ ServServ ServServ

Enterprise Application Integration Service-Oriented Architecture

Address Changed

Application
Services

Common
Services

Figure 10: EAI vs. SOA

Copyright ThoughtWorks, Inc. 2002 Page 15

In a real-life solution we can be certain to see a fair amount of overlap between these two ideals, but the
underlying principles are important to consider because they lead us to some of the important testability
considerations when developing SOAs. In an EAI solution we generally design two ends of a data
interchange concurrently. Therefore, we can design, test and debug adapters and transformations between
two specific applications. In an SOA solution, we generally do not have this luxury. We cannot anticipate
the usage of the services we provide since the goal of the SOA is to allow the creation of new, complex
applications on top of these services. This requires us to be even more stringent in specifying exact
interfaces for our services and to test for all possible scenarios.

One advantage that Web services-based architectures are likely to bring is the availability of commercial
testing tools. Since Web-services based solutions can rely on a set of standards for transport and interface
definitions (SOAP and WSDL) plus a list of associated standards, it is more lucrative for a testing tool
vendor to address Web services as opposed to the proprietary API of an EAI suite. We are already starting
to see commercial testing tools that focus on automated test case generation from WSDL files.

Non-Functional Testing
So far, we have focused primarily on functional testing. Given that an integration solution forms the
backbone of the enterprise, verifying non-functional requirements such as scalability, robustness and fail-
over are paramount. In many instances we can leverage the investment in an automated functional test
framework to support non-functional tests.

For example, we can use test data generators on a larger scale to generate load on the system for load-
testing and scalability tests. Basically, we need a set of efficient test data generators that can be run from
an array of test machines to generate sufficient load on the integration solution. We can modify test data
verifiers to collect statistics such as message transmission time or latency. We can choose to verify the
actual outcomes to detect erratic behavior under high load or we can decide to ignore the outcome because
we are simply interested in maximum throughput.

Fail-over situations require new forms of test data generators. These test cases verify that a system can
successfully reroute messages to alternative transport channels and processing units when a massive failure
occurs on one unit (e.g., hardware failure, network failure or system crash). In order to test this behavior
we need to be able to simulate these failures, i.e. we need to be able to simulate a network failure. It is fair
to say that in most cases these types of tests cannot be 100% automated and may still require some amount
of human participation (e.g., to unplug a network cable).

Conclusion
Test-driven development is an important technique to delivering high quality applications and to enable an
agile, iterative style of development. The same holds true for application development as well as
integration development. Enterprise integration solutions present us a series of additional challenges such
as a heterogeneous environment linked via asynchronous messaging. As a result, the availability of a
testing framework is even more crucial to simplify and automate the testing of these solutions.

The framework presented in this paper has been used successfully in integration projects. As integration
solutions continue to evolve -- particularly with the advent of Web services and service-oriented
architectures – our needs for testing are likely to evolve as well. Following the concept of testability we
will continue to enhance the existing framework as integration technologies and our understanding of
testing in integration solutions evolve.

	T
	Summary
	Testing Complex Business Applications
	Testing – The Stepchild of the Software Development Lifecycle?
	Test-Driven Development
	Effective Testing
	Testing Frameworks
	Layered Testing Approach
	Unit / Component Testing
	Integration Testing

	Testing Integration Solutions
	Anatomy of an Enterprise Integration Solution
	EAI Testing Challenges
	Functional Testing for Integration Solutions
	Testing Applications and Adapters
	Testing Transformations
	Testing Business Processes
	Testing External Interfaces / Portals

	EAI Testing Framework
	Design for Testability
	Web Services and Service-Oriented Architectures
	Non-Functional Testing
	Conclusion

